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tive phase shifts in the scattered wave. This contrasts 
with the first Born approximation and the usual 
formulation of small-angle scattering, which require 
the scattered field to be small. Furthermore, the first 
Born approximation breaks down if the scattering is 
weak but extends over a region that is large com- 
pared with the incident wavelength (Gottfried, 1966). 
In this case, (25) is not valid. 

The fact that refraction phenomena and scattering 
are intimately related is not new. Ewald and Oseen 
(Born & Wolf, 1964) have provided rigorous 
derivations of the laws of refraction and reflection of 
light from considerations of scattering of electromag- 
netic radiation from electric dipoles in optical media 
(the Ewald-Oseen extinction theorem). Here, a 
unified treatment of small-angle scattering and 
refraction of X-rays has been obtained using the 
Rytov approximation for the X-ray phase. 
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Abstract 

Statistical methods are used to derive an expression 
for the average X-ray diffraction intensity, as a 
function of (sin0)/A, of crystals with an incommen- 
surate one-dimensional modulation. Displacive and 
density modulations are considered, as well as a 
combination of these two. The atomic modulation 
functions are given by truncated Fourier series that 
may contain higher-order harmonics. The resulting 
expression for the average X-ray diffraction intensity 
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is valid for main reflections and low-order satellite 
reflections. The modulation of individual atoms is 
taken into account by the introduction of overall 
modulation amplitudes. The accuracy of this expres- 
sion for the average X-ray diffraction intensity is 
illustrated by comparison with model structures. A 
definition is presented for normalized structure fac- 
tors of crystals with an incommensurate one- 
dimensional modulation that can be used in direct- 
methods procedures for solving the phase problem in 
X-ray crystallography. A numerical fitting procedure 
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is described that can extract a scale factor, an overall 
temperature parameter and overall modulation 
amplitudes from experimental reflection intensities. 

1. Introduction 

For nonmodulated crystals, a statistical method 
exists that allows for the determination of a scale 
factor and an overall isotropic temperature param- 
eter from X-ray diffraction data (Wilson, 1942). The 
results are then used to bring the intensities from a 
relative to an absolute scale and to calculate 
normalized structure-factor amplitudes. This method 
cannot be applied to X-ray diffraction data of 
incommensurately modulated crystals, because of the 
different behavior of the intensities of main and 
satellite reflections. 

Recently, an expression has been derived for the 
average X-ray diffraction intensity, as a function of 
(sin0)/a, of crystals with an incommensurate one- 
dimensional displacive modulation (Lam, Beurskens 
& van Smaalen, 1992a). Averages for main reflec- 
tions and averages for first-order satellites were used 
together in a fitting procedure similar to that of 
Wilson (1942). In this way, a scale factor, an overall 
isotropic temperature factor and an overall modula- 
tion amplitude could be determined directly from the 
measured intensities. The overall modulation ampli- 
tude was interpreted as a weighted average of the 
individual modulation amplitudes. The results were 
used to calculate normalized structure-factor ampli- 
tudes (Lam, Beurskens & van Smaalen, 1993). How- 
ever, because the Fourier series for the displacive 
modulation were truncated at the first-order har- 
monic, this expression for the average X-ray diffrac- 
tion intensity is only valid for main reflections and 
first-order satellites. 

In the present paper, a more general expression is 
derived for the average X-ray diffraction intensity of 
incommensurate one-dimensionally modulated crys- 
tals. This expression incorporates displacive and den- 
sity (occupational) modulations and it allows 
higher-order harmonics in the Fourier series of the 
modulation functions. The average intensities of 
satellites of any order can thus be described. The 
modulation is taken into account by the introduction 
of one overall modulation amplitude for each har- 
monic of the displacive modulation and for each 
harmonic of the density modulation. In addition, the 
expression for the average X-ray diffraction intensity 
is used to define normalized structure factors for 
crystals with an incommensurate one-dimensional 
modulation. 

2. Structure-factor formalism 

An incommensurately modulated crystal can be con- 
sidered as a three-dimensional translationally sym- 

metric crystal (the basic structure), upon which a 
periodic deviation (the modulation) is superimposed. 
The wavelength of the modulation is incommen- 
surate with respect to the lattice of the basic struc- 
ture. Therefore, an incommensurately modulated 
crystal does not have three-dimensional translational 
symmetry. However, long-range order does exist. 
The unit cell of the basic structure is spanned by the 
vectors ai (i = 1, 2, 3). The reciprocal basic vectors a* 
are defined by a i ' a*  = 3 U. The periodicity of the 
incommensurate one-dimensional modulation is 
given by the wave vector q = y3= l qia*, where at 
least one of the qi is an irrational number. 

Two types of modulations are generally distin- 
guished: displacive modulation and density modula- 
tion. If  displacive modulation occurs, the positions 
of the atoms are subject to periodic variations. Let 
the position of an atom /z in the basic structure be 
given by ro, Lt~ = r~ + L, where r~ is the position of the 
atom in the basic-structure unit cell and L is a 
basic-structure lattice vector. The position of the 
same atom in the modulated crystal is then given by 
rE = " + u ~' • r ~' u ~' ro.L (q 0,L), where describes the atomic 
displacement. The function u ~' is periodic and can be 
written as a truncated Fourier series, 

u"(q 'r~,L)= }-'. _ Uf~Q,isin (27rkuq ' r~L-  a~a)ai , 
k u = l  i =  1 

(1) 

where U~u,~ and a~.,~ are the three amplitudes and 
three phases, respectively, of the k.th harmonic and 
Ku is the maximum number of harmonics contri- 
buting to this series. Equation (1) can also be written 
a s  

u~(q'r~,L) = ~'. [U~'fsin(2~'kuq'ro.e) 
ku= 1 

- U~f cos (2Trk.q • r~,L)], (2) 

with the vectors U~. 'c and U~f given by 
3 

U~f = Z Uk~,icos (a~'u,3a, (3) 
i = l  

and 
3 

U~ 's= 2 U~uasin (a~,.,)at, (4) 
i = 1  

respectively. 
In the case of a density modulation, it is the 

occupancy factor that shows a periodic variation. 
For an atom at basic-structure position r~,L, the 
occupancy factor, p~ = p~(q" r~,L), can be written as 
the truncated Fourier series 

r~ 
f f ' (q ,  ro~,L) = Pg + ~" P~' sin (2zrkpq" rg, L --/3~'), (5) 

kp= 1 
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where P~_ and fl~, are the amplitude and phase, 
respectively, of the kpth harmonic and Pg is the 
average occupancy factor of atom #. The maximum 
number of harmonics contributing to this series is 
denoted Kp. Equation (5) can be rewritten as 

x, 
P~'(q'ro~,L) = Z p~' exp (2rrikpq'rg, L), (6) 

with the complex amplitudes pk~ given by 

- ( ie~/2)  exp ( -  ibm) k~ > 0 

pf. = P~ kp = 0 (7) 

(iP~-kf2) exp (ifl~_k) kp <0. 

The diffraction pattern of an incommensurate one- 
dimensionally modulated crystal consists of main 
reflections at the nodes of the reciprocal lattice of the 
basic structure, accompanied by satellite reflections 
that are usually weaker. Diffraction vectors S = 
~3 &a;* are defined as S = H + m q ,  where H i = 1  = 
23 i= 1 Heal* is a diffraction vector of the basic struc- 
ture and m is the satellite index. This means that, for 
a given modulation wave vector q, each diffraction 
vector S is uniquely characterized by a set of four 
integers (H~, HE, H3, m).t There are two kinds of 
reflections: main reflections (m = 0) and satellite 
reflections (m # 0). The order of a reflection is 
denoted [m[. 

The structure factor for X-ray scattering from a 
crystal with an incommensurate one-dimensional 
modulation is written as (de Wolff, 1974; 
Yamamoto, 1982) 

N 

F(S,m) = ~ g~(S,m)f~(S)exp[2~ri(S-  mq)'r~], (8) 
p . = l  

where the summation extends over all atoms (N) in 
the basic-structure unit cell. The effect of the modu- 
lation on the X-ray diffraction intensity is given by 
the atomic modulation factor 

1 

g~'(S,m) = f p~ ' (r )exp{2rd[S '# ' (r )  + mr]}dr,  (9) 
0 

where p~ and n g are the atomic modulation func- 
tions for the density modulation and the displacive 
modulation, respectively. The atomic scattering 
factor f~ may be approximated by 

fl'(S) = fg  (s) exp ( - Bs2), (1 O) 

where fg is the form factor for atoms at rest, B is an 
overall isotropic temperature parameter and s = 
(sinO)/a = S/2, with S being the length of the diffrac- 
tion vector S. For the theoretical evaluations, fg  may 

i" (H~, //2, /-/3) are usually denoted (h, k,/). 

be approximated by 
{ N }1/2 

fg(s) ---- Z,, (1/tr) Z [f~o(S)] 2 , (11) 
v = l  

where Zg is the atomic number and or = y N/z=l Z/z.2 
Note that, with the assumption of no anomalous 
scattering, the atomic form factor is a real function. 
From this and from the fact that g~'(S,m)= 
[g~(- S, -m)]*, where * denotes the complex conju- 
gate, it follows that Friedel's law applies to the. 
structure factor. 

Note that, for crystals with density modulation, 
the atomic form factor fg  may actually represent the 
scattering factor of an averaged atom. However, this 
requires proper adjustment of the values of the 
amplitudes P~,I. 

3. An expression for the average intensity 

To derive the expression for the average X-ray dif- 
fraction intensity, the atomic modulation factor g~ is 
evaluated first. From expression (2) for the atomic 
displacement u ~, a straightforward calculation leads 
to 

K. 
S" u~(q • rg, L) = ~ C~(S) sin [2rrkuq" r~.L -- r/f~(S)], 

ku= l 

(12) 
with the amplitude Cf and phase r/~ defined by the 
transformation (Petfi6ek, Coppens & Becker, 1985; 
Petfi6ek & Coppens, 1988) 

{ S" Uf f  = Cry(S) cos [~Tf.(S)] ~, (13) 

Uf~ '~ = Cf.(S) sin [Wk~(S)] 

and with Cf.(S) _ 0. Note that, from (13), it follows 
that tan [~/Ku(S)], and therefore ~/k.(S) itself, depends 
only on the orientation of S and not on its length. 
From (13), by substitution of (3) and (4), the ampli- 
tude Cfu can be derived as (Lam, Beurskens & van 
Smaalen, 1992a) 

C~u(S) = S,(t.I~)uS j , (14) 
i , j= 1 

where 0 ~  is a symmetric tensor that depends on the 
amplitudes and phases of the kuth harmonic of the 
atomic displacement, through the definition of its 
components 

(Of.)#-- U~.,,U~.jcos(a~., i-  a~.j). (15) 

Equation (14) clearly illustrates the anisotropic 
behavior of the displacive modulation. It can be 
shown that the displacive modulation simulates an 
anisotropic temperature effect (see Appendix A). For 
the benefit of this paper, however, an isotropic 
approach to the displacive modulation is needed. 
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From (13), the amplitude C~. can also be written as 

C~'.(S) = 2s{( r>x~2 ~ J cos~[~:~(S)] 
t" ir T~ , s~2  /x , s  1 /2  + ~,k. j cos2[rk, (S)]} . (16) 

Here, U~f and U~, '~ are the lengths of the vectors 
U~ S and U~, 's, respectively. The angles between the 
vectors S and U~'f and between the vectors S and 
U~' 's are denoted 8~-~ and 6~,s, respectively. Note 
that both angles depend only on the orientation of S 
and not on its length. 

By substitution of (6) and (12) and by use of a 
relation between exponential functions and Bessel 
functions [equation (8.511-4) of Gradshteyn & 
Rhyzik (1980)], the integrand of (9) becomes 

r~ 
Y, p~ exp [2zri(kp + m)r] 

X 17 ~'. Jm~[27rC~(S)] 
k u = 1 m ~  = - ~ " " 

x exp{imL[r&(S ) + r r -  2~rk.r]}), (17) 

where J~ is the nth-order Bessel function of the first 
kind. The multiple product with respect to ku and the 
summation with respect to mk~ can be interchanged, 
which causes (17) to become 

E E "'" E P~. J,.%[2rrC~.(S)] 
k p  = - K p  m ~  = - oo m ~ , ,  = - co k u = 1 

x exp i Z m<[n<(S) + 
k u =  1 

x exp 2,n-i kp + m -  2 m ~ k ,  r . (18) 
k u =  I 

With (18) for the integrand of (9), the integral with 
respect to r can be evaluated. It follows that a term 
in the multiple summation of (18) only contributes to 
the integral if the condition 

K. 

Z m~k~, = kp + m (19) 
k u =  1 

is fulfilled. This leads to the following expression for 
the atomic modulation factor: 

g"(S,m) = 

2 Z " ' "  Z P~'. [2~-C~.(S) 
kp  = - K p  m ~  = - oo m ~ .  = - oo k~ = 

~" ~" rr] (20) x exp i Y. mk.[nk.(S) + • 
k u =  I 

Note that (19) and (20) resemble similar expressions 
implicitly given by (7) of Petfirek & Coppens (1988), 
where a more general case of displacive modulation 

is considered but where the effect of density modula- 
tion is not taken into account. 

An expression for the intensity IFI 2 can be derived 
from (8), by substitution of (20) for the atomic 
modulation factor. Amongst other things, this 
expression depends on the average positions r~ and 
on the modulation parameters of the individual 
atoms. As for nonmodulated crystals (Wilson, 1942), 
the average of IFI 2 is calculated over a sufficiently 
large set of reflections in a narrow s interval. This set 
contains all diffraction vectors that have approxi- 
mately the same length S and therefore have their 
end points within a thin shell of radius S - 2 s  in 
reciprocal space. For a modulated crystal, the 
behavior of the intensity of main reflections is quite 
different from that of satellite reflections. Therefore, 
for reflection order [ml, the average is calculated 
separately.* The average of I?-12 over such a set of 
reflections is denoted ([F[2)s.lml . Note that the expres- 
sion for IFI ~ contains a number of terms that will 
cancel when (IFl2)s.lml is evaluated. Which terms these 
are and the conditions under which they cancel are 
briefly described below. 

To evaluate the expression for IFI =, the structure 
factor [(8)] is first multiplied by its complex conju- 
gate. Some of the terms in the resulting multiple 
summation depend on a nonzero interatomic dis- 
tance vector r~ - r~, where ~ and v denote different 
atoms in the basic-structure unit cell. From the same 
assumptions as used by Wilson (1942), it can be 
shown that these terms will cancel when ( F  2)s,lm I is 
evaluated. Thus, in the expression for IF[ 2 at hand, 
only the term Y. N 1 g " f "  2 has to be considered. / x =  

The next step involves the evaluation of Ig"f'q 2 by 
substitution of (20) for the atomic modulation 
factor. In the resulting multiple summation, terms 
occur that contain a factor exp[iY.~-_-l(rn~- 
m,~ <)rlk.(S)], with not all integer differences m k ~ -  
m'~. equal to zero. From (13), with the vectors U~f 
and U~. 's being nonzero and not parallel to one 
another for each pair (/z,k,), it follows that, with the 
previously specified set of reflections, the numerical 
values of r/~.(S)(modulo 27r) are uniformly distrib- 
uted throughout the interval [0,27r].t Consequently, 

* Let there be a large set of  satellite reflections, with all satellites 
having their end points in a thin shell of  radius S in reciprocal 
space and with the same reflection order Iml- This set can be 
divided into two other sets: one containing the m < 0 satellites and 
the other containing the m > 0 satellites. Because Friedel's law 
applies, a reflection in one of  these two sets will always have a 
Friedel-related reflection, having the same structure-factor ampli- 
tude, in the other set. This means that the average intensity is the 
same for both sets of  reflections. Consequently, the average inten- 
sity is independent of  the sign of the satellite index m. 

t It is realized that this is not true for special cases of the 
vectors U~f  and Uk, ,  but such cases are not considered here. Also 
note that, as in the conventional Wilson plot, atoms are supposed 
not to be on special positions. 
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these terms will also cancel when (]Fl2)s,lml is 
evaluated. 

Herewith, the average intensity (IFI3s.lml can be 
written as 

( )~,lml=exp(-2Bs2) V~(S)] 2 F(s;m). (21) 
/ ~ = 1  

The function F is written as a multiple summation of 
discrete averages, 

N Kp oo oo 

r(s; Iml) = Z Z 2 ... 2 (z~[p~f/oO 
I z  = 1 k p  = - -  K .  mUf . . . .  ~¢~ = - -  0 0  

x JZ~[2rrC~u(S)] s,lm[, (22) 
u = l  

where (10) and (11) have been used. The first two 
factors in (21) make up the average intensity for 
nonmodulated crystals (Wilson, 1942) while the last 
factor (F) is the modification that describes the 
devation from this average intensity caused by the 
displacive modulation and/or the density modula- 
tion. Note that the contribution of the displacive 
modulation to the average intensity is not only 
weighted by Z 2 but, when density modulation 
occurs, also by a factor [p~_l 2. Thus, in the general 
case of displacive modulation and density modula- 
tion, mixing of different harmonics occurs in each 
term of (22). 

In the limit of diminishing modulation (for all 
atoms #; U~,,i---'O for all k, and i, P~--- 1. and Pk_. ~1 ---" 
0 for kp # 0), (21) reduces to the average mtenslty for 
nonmodulated crystals. For main reflections (m = 0), 
F---,1 and (21) becomes identical to the average 
intensity for nonmodulated crystals. For satellite 
reflections (m # 0), F---,0 and t h u s  ([Fl2}s, lml'~O, i.e. 
the satellite reflections disappear. 

4. Normalization of structure factors 

For a proper evaluation of the average X-ray diffrac- 
tion intensities, the symmetry of the crystal must be 
taken into account. It can be shown that its main 
effect is to enlarge the intensities of particular groups 
of reflections by a factor e, the symmetry- 
enhancement factor, which can be defined as for 
nonmodulated crystals (Wilson, 1950; Giacovazzo, 
1980; Lam, Beurskens & van Smaalen, 1993). One 
can then define the partially normalized structure 
factor E~ by 

{ Ea(S ) = F(S) e(S) (23) 
/ x =  

and, by use of (21), write its mean square as 

(Ig~12),,Iml = exp ( -  2Bs2)V(s;Im[). (24) 

As the experimental intensities I are on a relative 
scale, a scale factor K is introduced and defined by 

IF(S)I= = K2I(S) .  (25) 

From (23), (24) and (25), the observed average of 
IEol 2 o n  a relative scale, denoted Go(s;lml), can then 
be written as 

Go(s;m) ( / (S ){ e j  ~ [f~(s)]2}-l)s, lm, = --1 (26) 

while the theoretical expectation value, denoted 
Gc(s;Iml), is equal to 

Gc(s; Iml) = K -2 exp ( -  2Bs2)F(s; Iml). (27) 

After reflections have been sorted, for each reflec- 
tion order Iml, into suitable intervals of s, expressions 
(26) and (27) can be employed by a fitting procedure 
to estimate overall structural parameters (e.g. K, B 
and possibly modulation parameters) from average 
intensities. 

Unfortunately, expression (22) for F is not very 
suitable for use with a fitting procedure. For non- 
modulated crystals, the average X-ray diffraction 
intensity can be estimated without any prior knowl- 
edge of the crystal structure, except for the contents 
of the unit cell (Wilson, 1942). Expression (22) not 
only depends on the contents of the basic-structure 
unit cell but also on the modulation parameters of 
individual atoms. Consequently, evaluation of the 
average intensity of an incommensurately modulated 
crystal also requires knowledge of the complete 
atomic modulation functions (p~' and u~'). Therefore, 
to obtain an expression for the average intensity that 
is suitable for use with a fitting procedure and that 
does not depend on modulation parameters of indivi- 
dual atoms, further approximation of F [(22)] and 
introduction of overall modulation amplitudes is 
necessary. When this has been done (see ~j 5 and 6), 
normalized structure factors can be defined by [(23), 
(24)] 

{ E(S) = F(S) exp (Bs 2) e(S)F(s; Iml) 
~ =  

(28) 

5. A low-order approximation to F 

As a first approximation to F, the discrete average is 
replaced by a continuous average, i.e. the last factor 
on the right-hand side of (22) is replaced by 

(1/4rr)f dO, (29) 
u = 

where the twofold integral with respect to /2  extends 
over all orientations of the diffraction vector, while s 
and [ml do not change. 
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Furthermore, as in Lam, Beurskens & van 
Smaalen (1992a), it is assumed that the modulation 
amplitudes of the individual atoms are small. For 
this reason, all contributions to F as a result of 
integrals (29) will be neglected if the integrands are 
of order higher than 2 in the modulation amplitudes. 
Consequently, for all atoms #,  the multiple sum- 
mation with respect to the integers m~u in (22) can be 
restricted to terms of the following types: 

type 1, 

type 2(a), 

m~' = 0 for all ku; (30) 

m ~ = l  and m~.=0 f o r k u ~ k ;  (31) 

type 2(b), 

m ~ = - I  and m~.=0 f o r k u ~ k .  (32) 

Of course, each of the conditions (30), (31) and (32) 
restricts the summation with respect to kp as well. 
For each of these terms, the contribution to F is 
evaluated as follows. 

For terms of type 1, combination of conditions 
(19) and (30) results in the extra condition kp = - m ,  
i.e. the summation with respect to kp in (22) no 
longer exists for this case. As a result, a nonzero 
contribution to F for terms of type 1 is only possible 
if the condition - Kp <_ m <_ Kp is fulfilled. As is 
discussed later, Kp can always be chosen to meet this 
condition (see § 7). The contribution to F can then 
be written, using (29), as 

Z (z2Lo"m 2/4rrtr I-I Jg[2rrC~'(S dO. (33) 
/ z = l  k . = l  

With the assumption that the amplitudes C~, are 
small, the multiple product in (33) can be approxi- 
mated using the series expansion for Bessel functions 
[equation (8.440) of Gradshteyn & Ryzhik (1980)] 
and disregarding all terms of order higher than 2 in 
the amplitudes C~. Subsequent substitution of (16) 
for C~u results in the following expression for the 
integrand of (33): 

Ku 
1 8"/7"2S2 Z /z,c 2 - ) cos2[8 ;c(s)] 

+ (U~") 2 cos 2 [8~'s(s)]}. (34) 

Note that each of the terms in (34) can be 
integrated independently. Thus, the angles 6~ -c and 
8~2 s can be replaced by a single integration variable & 
and dg2 = sin (&) d8 ds c, where 8 and ( are polar 
angles, with 8 ~ [0,rr] and ( C  [0,27r], describing 
the orientation of the diffraction vector. Expression 
(34) can then be replaced by 

1 - 8rr2s 2 Z (U~u) 2 cos 2 (8), (35) 
ku= 1 

where the atomic modulation amplitudes Uk~ are 
given by 

U~' u = [(U~f) z + (U~-S)2] 1/2. (36) 

By substitution of (35) for the integrand and by 
use of the transformation x = cos (&), (33) becomes 

1 

Pare f{1 - [4~s(Vm/Pm)x]2/2}dx, (37) 
0 

with overall modulation amplitudes defined by 

P~,p= (1/tr) IPk~ , (38) 
/ z=  ( ),2 
,c~ 2 (39) Z v ,,ko 

k~= 1 

and 

Vkp j,. = zau [p~,lz(u~) 2 (40) 
=1 

Note that the amplitudes V~, k are a mixture of 
the modulation amplitudes of tia~ Ikplth harmonic of 
the density modulation and those of the kuth 
harmonic of the displacive modulation. 

Expression (37) is not a very good approximation 
to (33). Especially at larger s values and larger 
displacive modulations, the integrand of (37) may 
even become negative. In contrast, the integrand of 
(33) is positive or zero. To improve the behavior of 
the present approximation, (37) is written as 

K. 1 
PZm I-I f{1 -- [47rs(Vm,k/Pm)x]a/2}dx, (41) 

k u = l  0 

which is correct up to second order in the ampitudes 
of the displacive modulation. By use of the series 
expansion for Bessel functions, the integrand of (41) 
can be replaced by 

J2147rs( Vm,k,,/Pm)x]. (42) 

From a strictly mathematical point of view, the 
replacement of a truncated series expansion by a 
special function is, in general, not a unique opera- 
tion. Of course, the main reason to use (42) for the 
integrand of (41) is that squared Bessel functions are 
also involved in (33). In addition, squared Bessel 
functions show a more desirable behavior at larger 
values of their arguments. This is in contrast to, for 
example, approximations based on exponential func- 
tions. Furthermore, for a special case of displacive 
modulation, it can be shown that, for main reflec- 
tions (m = 0), (33) can be evaluated to correspond 
exactly to equation (12) of Lam, Beurskens & van 
Smaalen (1992a). This also suggests the use of Bessel 
functions for incorporating effects of higher-order 
terms in the series expansion. By use of (42) for the 



696 GENERAL EXPRESSION FOR AVERAGE X-RAY DIFFRACTION INTENSITY 

integrand of (41),* the contribution to F for terms of 
type 1 can finally be written as 

/¢, 

p 2  I-I Z ( s ;  O, Vm,k , , /Pm)  , ( 4 4 )  
ku= 1 

where the function Z is defined by [equation (12) of 
Lam, Beurskens & van Smaalen (1992a)] 

I 

Z(s; n, u)= f J](4rrsux)dx. (45) 
0 

For terms of type 2(a), combination of conditions 
(19) and (31) results in the extra condition k = kp + 
m. Therefore, the summation with respect to kp in 
(22) is now restricted to those terms that fulfil the 
condition 1 _< k p  + m <_ K~. The contribution to F 
can then be written, using (29), as 

N G 
Z Y (Z2[P~,[ 2/4~rtr) 

p , = l  k p = -  G 
1 <kp+rn<K~ 

x f f  n { J2127rC~" + m ( S ) ]  

× 1-I j2[2rrC~.(S)] dO. (46) 
k . =  1 

ku ~ kp + m 

Through the same procedure as is used for terms 
of type 1, this expression can be approximated by 

Y P2k.f{[4~rs(Vk.,k.+m/Pk)x]Z/4}dx, (47) 
kp = - Kp 0 

1.: k ~ + m < Zq 

where the overall modulation amplitudes Pkp and 
Vk g +m are given by (38) and (40), respectively. 
Nc~t~ that the integrand of (47) only contains a 
contribution from the factor j2 in (46). In the present 
low-order approximation, neglect of the higher-order 
terms has effectively the same result as if all factors 
j2 in (46) had been replaced by 1. 

* Instead of the integrand of (41), one can also replace the 
integrand of (37) by a squared Bessel function. Expression (44) 
can then be replaced by 

l~,.Z(s; O, V, , /P, , ) .  (43) 

Although this is a less complicated expression than (44), it has a 
serious disadvantage. For crystals with large displacive modula- 
tions the overall modulation amplitudes V~. will be considerably ' . e , 
larger than the amphtudes V~,,k. However, the present approxi- 
mations are based on small modulation amplitudes. Therefore, 
(44) is expected to be a better approximation. Numerical tests 
show that this is indeed true. Especially for main reflections, where 
F is mainly determined by the contribution from terms of type 1, 
and at higher s values, severe deviation from the true intensity 
distribution occurred when (43) was used to estimate the X-ray 
diffraction intensities. 

By use of the series expansion for Bessel functions, 
the factor between braces in the integrand of (47) can 
be replaced by a factor J~. The contribution to F for 
terms of type 2(a) can then finally be written as 

G 
Y P2Z(s; 1, V k p , k , + m / P k p ) ,  (48) 

k~ = - I 9 
l < G + m < - K  . 

with the function Z given by (45). 
For terms of type 2(b), conditions (19) and (32) 

lead to the extra condition k = - (kp + m) and the 
summation with respect to kp in (22) is restricted to 
those terms that fulfil the condition 1 _< - (kp + m) -< 
Ku. Because the contribution to F for these terms can 
be derived in exactly the same way as described for 
terms of type 2(a), it can also be obtained from (48) 
by replacement of every occurrence of kp + m by 
-(kp + m). 

As a further simplification, one can assume that, 
for the Ikplth harmonic of the density modulation, 
the amplitudes [p~.[ are approximately the same for 
all atoms. One can then use the approximation 

Pk / 2 2 Vk..  Pkp = Uk. = 1Ar) E Z~,(U . (49) 
/ ~ = 1  

While, for given Kp and Ku, (44) and (48) require a 
total number of (Kp + 1)(Ku + 1) overall modulation 
amplitudes, with approximation (49), only Kp + 1 + 
K, amplitudes are needed. This reduction of the total 
number of overall modulation amplitudes is very 
important for the development of a fitting procedure. 
It will not only improve the convergence of the 
procedure, but the fit parameters can also be 
obtained more accurately. In fact, preliminary tests 
showed that, without (49), a successful fitting pro- 
cedure could not be developed because of depen- 
dencies between the fit parameters, as is discussed in 
§ 7. Also, note that the new overall modulation 
amplitudes Uk. depend only on the displacive modu- 
lation, whereas the amplitudes Vkp.k" also depend on 
the density modulation. This means that, with (49), 
density modulation and displacive modulation have 
been 'decoupled', i.e. each type of modulation now 
has its own overall modulation amplitudes. This will 
make it easier to interpret the parameters obtained 
from the fitting procedure. 

With the expressions [(44), (48)] for the terms of 
type 1 and types 2(a) and 2(b), using approximation 
(49), and with zero for other terms, (22) leads to the 
following result for F: 

K. 
f (s; m)= PZm 1-I Z(s; O, Uk.) 

ku= 1 

G 
+ Z P2pZ(s; 1, Uik.+,,,i). (50) 

k,=-  G 
l <lkp + ml< Ku 
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To show that approximation (50) is independent 
of the sign of the satellite index m, one should note 
that from (7) it follows that P~pl- P~-~p for all /x 
and kp. Consequently, the amplitudes Pk_ are 
independent of the sign of kp. As a direct result, the 
first term of (50) is independent of the sign of m. 
Further, the second term of (50) does not change if 
both m and kp are reversed in sign. Hence, F [(50)] is 
independent of the sign of the satellite index. 

Before a discussion of which overall modulation 
amplitudes can be estimated from a fitting procedure 
employing (50), two special cases for F are con- 
sidered. 

6. Special cases for/" 

While (50) describes the effect of combined density 
and displacive modulations on the average X-ray 
diffraction intensities, one can also consider crystals 
where only one of these two types of modulation 
Occurs .  

For crystals with only density modulation [U~u,i = 
0 for all/z, k~ and i; see equation (1)], one can easily 
show that Uk. = 0, SO that (50) reduces to 

r(s; m)= p2m (51) 

(assuming that Kp is large enough; see § 7). It follows 
that, for each reflection order Iml, Go(s; Iml) has the 
same functional form as the corresponding expres- 
sion for nonmodulated crystals (Wilson, 1942). This 
means that, for this special case, average intensities 
can be estimated from a Wilson plot, which can be 
made separately for each reflection order (although 
this is not a recommended procedure). 

If only displacive modulation occurs [for all atoms 
/.1,, P~ ~ 0 and P(~pl = 0 for kp ~ 0; see (5)], it follows 
that Po ~ 0 and Pkp - 0 for kp ~ O. Consequently, 
(50) reduces to 

Ku 
f Pg [-I Z(s; O, Uk) m=O 

F(s; m)=  { ku=, (52) 

t P2Z(s; 1, Ulml) m ~ 0 

(assuming that Ku is large enough; see § 7). For small 
displacive modulations, I-I~::=~Z(s;0, Uku) can be 
approximated by exp(-87r2s2U2/3), where U is de- 
fined by (58) in Appendix A. This means that F(s; O) 
resembles an isotropic temperature factor, causing 
Gc(s; 0) to have the same functional form as the 
corresponding expression for nonmodulated crystals. 
Hence, for this special case, only the average intensi- 
ties of main reflections can be used in a conventional 
Wilson plot. For satellite reflections, this is not pos- 
sible because Z(s; 1, Ulml) first increases with increas- 
ing s and then decreases, which is not the behavior of 
a temperature factor. (See Appendix A for a relation 
between temperature parameters and displacive 

modulation.) Note that, if the displacive modulation 
only contains a first-order harmonic (K, = 1), (52) 
combined with (21) corresponds to equation (13) of 
Lam, Beurskens & van Smaalen (1992a). 

7. Estimating overall modulation amplitudes 

The atomic modulation functions (u ~ and p'~) are 
represented by truncated Fourier series [(1) and (5)], 
whereas the true series expansions of these functions 
may contain an infinite number of harmonics, which 
also implies an infinite number of modulation ampli- 
tudes. However, a fitting procedure, employing (50), 
(51) or (52), can only estimate a few modulation 
parameters from the collected intensity data. This 
also limits the number of terms of the truncated 
Fourier series, given by Kp and Ku, and gives an 
impression of the number of harmonics that can be 
used to develop a model of the incommensurately 
modulated structure. 

To estimate overall modulation amplitudes from a 
fitting procedure, it is assumed that, for each reflec- 
tion order Iml, up to a maximum order mmax, the 
data set contains enough reflections to draw a plot of 
In G0(s; Irnl) versus s 2. For modulated crystals, this 
plot may be considered as the analog of the Wilson 
plot for nonmodulated crystals. 

One problem is that a fitting procedure will not be 
able to separate the scale factor K from the ampli- 
tudes Pk_. When (27) is combined with (50), (51) or 
(52), the ~ scale factor always appears in the factors 
Pkp/K. To solve this problem, one can either fix the 
value of the scale factor or the value of the amplitude 
P0. A reasonable estimate for the scale factor can be 
obtained from a conventional Wilson plot applied 
only to the intensities of the main reflections. On the 
other hand, an a priori chemical analysis of the 
contents of the basic-structure unit cell may result in 
an estimate for the overall amplitude Po. In the 
following, it is assumed that a reasonable estimate 
for the scale factor is available, which is kept fixed. 
Estimates for the overall modulation amplitudes can 
then be obtained as follows. 

For the special cases mentioned in § 6, the situa- 
tion is fairly simple. If only density modulation 
occurs, K u -  0 and F is given by (51), extrapolation 
of the plots towards s = 0 results in estimates for 
amplitudes Pkp with 0 -  Ikp[ <-mma x. The slope of 
each plot gives an estimate for the isotropic tempera- 
ture parameter B. [With expression (51) for F, the 
plots must be straight lines, parallel to one another.] 
Note that the Fourier series for the density modula- 
tion functions has to be restricted to Kp = mmax. 

For the case where only displacive modulation 
occurs, K p -  0 and F is given by (52). It is evident 
that B and U cannot be obtained separately from a 
fitting procedure if only main reflections are 
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involved. The reason is that, for main reflections, the 
displacive modulation simulates a temperature effect 
that adds to the true temperature parameter B, lead- 
ing to the (pseudo)temperature parameter Ba = B + 
47r2U2/3 of the average structure (see § 6 and 
Appendix A). However, the dependency of Z(s; O, u) 
on s is entirely different from that of Z(s; 1, u). One 
can therefore use main reflections together with sat- 
ellites, in a single fitting procedure, to separate all 
amplitudes Uku with 1 -< ku -< mmax from the tempera- 
ture parameter B (Lam, Beurskens & van Smaalen, 
1992a). The Fourier series for the displacive modula- 
tion functions can then be restricted to Ku = mmax. 
Amplitudes Uk~ corresponding to higher-order har- 
monics (k~ > mmax) cannot be separated from the 
temperature parameter B and may be given a zero 
value. The amplitude P0 can be determined by extra- 
polation of the intensity distribution for the main 
reflections towards s = 0. 

For the general case, with F given by (50), extra- 
polation towards s = 0 results in estimates for ampli- 
tudes Pk with 0 _< [kp[ <- mma x. To find out which of 
the amplitudes Uk~ can be determined from a fitting 
procedure, one should remember that (50) is derived 
using the assumption of small displacive modulations 
and series are only expanded up to second order in 
the amplitudes of the displacive modulation. A simi- 
lar series expansion of (50), up to second order in the 
amplitudes Uku, would lead to a first-order poly- 
nomial in s 2. Consequently, in the present low-order 
approximations, the mmax + 1 intensity distributions 
allow at most 2(mmax + 1) fit parameters. Because the 
temperature parameter B and the amplitudes Pk 
already require mmax + 2 fit parameters, there can b~ 
at most mmax fi t  parameters associated with the 
amplitudes Uku. On the assumption that lower-order 
harmonics are the most important ones, one can only 
estimate amplitudes Uk~ with 1 -< ku -< mma x. The 
Fourier series for the displacive modulation can then 
be restricted to K~ = mmax. 

Note that, in practical situations, e.g. the 
refinement of real structure with an incommensurate 
one-dimensional modulation, the Fourier series for 
the modulation functions are usually restricted to Kp 
= K u = m m a x  because, if satellite reflections with 
[m I > mma x are too weak to be observed, one may 
assume that harmonics with Ikpl > mmax or ku > mmax 
are insignificant. However, this is not always the 
case. 

One should be aware that (50), (51) and (52) are 
only approximations to (22). Therefore, the rules 
given above should not be applied blindly. For 
example, consider a crystal where only displacive 
modulation occurs and assume that the atomic 
modulation functions only contain first-order har- 
monics, e.g. sine waves. If the amplitudes of the 
atomic displacements are large enough, nonzero 

average X-ray diffraction intensities may be obtained 
not only for main reflections and first-order satellites 
but also for second-order satellites. Estimation of 
overall modulation amplitudes, by use of expression 
(52) for F, will then result in nonzero values for the 
amplitudes U1 and U2. However, from the atomic 
modulation functions, it follows that Uku- 0 for 
ku > 1. The discrepancy lies in the fact that, in the 
derivation of (50), only a few low-order terms in the 
multiple summation of (22) have been considered 
[terms of type 1 and types 2(a) and 2(b)]. But the 
first-order harmonics also contribute to second- and 
higher-order reflections through the higher-order 
terms in the multiple summation of (22). This dis- 
crepancy especially occurs for large atomic dis- 
placements. 

On the other hand, consider a crystal with large 
anharmonic displacive modulations, where higher- 
order harmonics are very important, e.g. a 'saw- 
tooth' modulation. Special structural effects that also 
occur for nonmodulated crystals, e.g. molecules with 
a noncrystallographic center of symmetry, and 
special types of modulation, e.g. 'rigid-body' modu- 
lation, may result in an excess of weak X-ray diffrac- 
tion intensities (Lam, Beurkens & van Smaalen, 
1993). Consequently, it may not be possible to 
measure satellite reflections of order higher than 1 
because these reflections are to weak to become 
observed. One may then easily conclude from the 
available intensity distributions that higher-order 
harmonics are not important. 

Note that, for crystals with only density modula- 
tion, the rule described above is correct because the 
IkpIth-order harmonics only contribute to reflections 
of order Ik l. 

8. Numerical evaluation 

The validity of approximation (50) for F has been 
tested by calculating intensity distributions from the 
simulated X-ray diffraction data of several model 
structures with different incommensurate one- 
dimensional modulations. As for nonmodulated 
crystals, the assumptions underlying the approxi- 
mations require a structure with many symmetry- 
independent equal atoms that are randomly distrib- 
uted throughout the basic-structure unit cell. Here, 
also, a random distribution of the components of the 
atomic modulation functions is required. The model 
structures were devised to fulfil these requirements as 
closely as possible. As a first test for the theory, 
expectation values for average X-ray diffraction 
intensities were estimated using overall modulation 
amplitudes calculated directly from the atomic 
modulation parameters of the structural model. For 
a subsequent test, overall modulation amplitudes 
obtained from a fitting procedure were used. 
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Characteristics of the model structures together 
with details of all atomic modulations are given in 
Table 1. All model structures (denoted P, D and DP) 
created have superspace group Pl(ql,q2,q3), with a 
realistic modulation wave vector. The basic-structure 
unit cell has realistic cell dimensions and contains 
50 C atoms, with the symmetry-independent atoms 
randomly distributed throughout the cell and not 
occupying any special positions. The model struc- 
tures come with different types of modulation; struc- 
ture P with displacive modulation, structure D with 
density modulation and structure DP with a com- 
bination of density modulation and displacive modu- 
lation. The maximum numbers of harmonics 
contributing to the atomic modulation functions [(1) 
and (5)] are restricted to Kp = Ku = 2. Amplitudes 
and phases of the atomic modulation functions were 
chosen at random but the atomic modulation ampli- 
tudes P~I and U~ u [(36)] fluctuate within reasonable 
limits around the overall modulation amplitudes P~ 
and Uku, given by (38) and (49), respectively. For an 
atom of structure DP, the modulation was obtained 
by combining the displacive modulation of the corre- 
sponding atom in structure P with the density modu- 
lation of the same atom in structure D. Furthermore, 
for each reflection order Iml, reflections of structure 
D have approximately the same average intensity as 
reflections of structure P. Consequently, structure 
DP is not dominated by a particular type of modula- 
tion. Overall modulation amplitudes calculated 
directly from the atomic modulation parameters of 
the structural model are given in lines m of Table 2. 
For all model structures, structure factors were cal- 
culated (Yamamoto, 1985) for main reflections and 
first- and second-order satellites ( m m a x - - 2 ) ,  u p  t o  S 
= 1A- I ,  using K =  1 and B = 2 A2. (These calcu- 
lated reflection intensities are denoted 'reflection 
data'.) 

For each model structure, the intensity distribu- 
tions (26) were obtained from the reflection data as 
follows. First, suitable s intervals were created by 
dividing reciprocal space into spherical shells of 
equal volume. Then, for each reflection order [m[, 
reflections were partially normalized and sorted into 
these intervals. Thus, each interval contains approxi- 
mately the same number of reflections. In a progress- 
ive averaging procedure, each interval was combined 
with its two neighboring intervals. Finally, for each 
reflection order, the resulting data points were plot- 
ted as graphs of In Go(s; Iml) versus s 2. 

As a first test, for each reflection order, expecta- 
tion values G~ were estimated by use of (27), com- 
bined with expression (50) for F, and compared with 
the intensity distributions (26) obtained from the 
reflection data. Here, F was evaluated using overall 
modulation amplitudes calculated directly from the 
atomic modulation parameters of the structural 

Table 1. Model structure characteristics 

Minimum (min.) and maximum (max.) values for the atomic 
modulation amplitudes P~¢,I (0 < Ikpl --- Ke = 2) and U~ (1 --- k, --- 
K~ = 2) of  the following model structures: structure P, with displa- 
cive modulation; structure D, with density modulation; structure 
DP, with density modulation and displacive modulation (see text 
for explanation). The overall modulation amplitudes correspond- 
ing to the atomic modulation amplitudes are given in Table 2. 

Model e ~  PI' e ~  U~ (A) U~ (/~) 
structure min./max, min./max, min./max, min./max, min./max. 

P 1/1 0/0 0/0 0.095/0.256 0.019/0.123 
D 0.781/0.979 0.401/0.591 0.147/0.337 0/0 0/0 

DP 0.781/0.979 0.401/0.591 0.147/0.337 0.095/0.256 0.019/0.123 

Table 2. Overall modulation amplitudes 

For each model structure, line m contains the values of  the overall 
isotropic temperature parameter B and the overall modulation 
amplitudes Pk (0 <- kp <- Kp = 2) and Uk (1--- k~ <-- K~ = 2) 

• p . u 

calculated directly from the atomic parameters of  the structural 
model• Similarly, line f contains the values of the same param- 
eters, but obtained from a fitting procedure employing (26) and 
(27) with (50). For comparison, line W contains the values of the 
parameters B and Po obtained from a conventional Wilson plot 
applied only to the intensities of the main reflections. 

Model 
structure B (/~2) Po PI P2 U~ (,~) U2 (/~) 

m 2 1 0 0 0.200 0.080 
P f 2.00 0 .999  0.001 0 .000  0.195 0.081 

W 2.45 0.965 

m 2 0.900 0.250 0.125 0 0 
D f 1.99 0 .897  0.248 0 .124  0 . 0 0 0  0.000 

W 1.98 0.895 

2 0.900 0.250 0 .125  0 . 2 0 0  0.080 
DP 2.01 0.914 0.243 0 .123  0 . 1 9 9  0.084 

W 2.41 0.867 

model (see lines m of Table 2). Figs. l(a), (c) and (e) 
show that, for all model structures, the true intensity 
distributions are accurately reproduced, although a 
small deviation at higher s values can be observed 
for the intensity distribution of the second-order 
satellites of structure DP. 

As a next step, for each model structure, the 
modulation parameters were estimated by use of a 
fitting procedure employing (26), (27) and (50). Fit- 
ting was done with the Marquardt nonlinear least- 
squares method (Kowalik & Osborne, 1968; 
Bevington, 1969). With the highest reflection order 
mma x equal to 2, the following fit parameters were 
used: the overall isotropic temperature parameter B 
and the overall modulation amplitudes P~o (0 -< kp -< 
Kp = 2) and U~ u (1 -< ku -< Ku = 2). The scale factor K 
was fixed to have the value 1 (see discussion in § 7). 
Starting values for B and Po were obtained from a 
conventional Wilson plot applied only to the intensi- 
ties of the main reflections. (The amplitude Po was 
assigned the value of Kw 1, where Kw is the scale 
factor of the Wilson plot.) The starting values for the 



amplitudes P1 and P2 were set to 0.001 while the 
amplitudes U] and U2 were assigned starting values 
of 0.001 A. The fitting procedure minimized the 
function 

no 

X~ = Z w , (Y  ° - Y~)2/(no - rip), (53) 
i = 1  

o 

o .  

A 

o 

where, for each model structure, the summation with 
respect to i counts the number of data points up to a 
total number of no data points in all intensity distri- 
butions together, np is the number of fit parameters 
and wi is a weight factor that counts the total 
number of reflections in each s interval. Further, yO is 
equal to In Go(s; Im]) calculated from the reflection 
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( f )  

Fig. 1. Natural logarithm of the partially normalized average intensity Go(s; [m[), as a function of s 2, for main reflections (circles), [m[ = 1 
satellites (triangles) and [m[ = 2 satellites (squares). The dotted lines are conventional Wilson plots applied only to the intensities of the 
main reflections. The solid lines represent Go(s; [m[) calculated by use of (27), combined with expression (50) for F and with overall 
modulation amplitudes that are either calculated directly from the structural model or obtained from the fitting procedure. 
(a) Structure P with amplitudes from the model. (b) Structure P with amplitudes from the fit. (c) Structure D with amplitudes from 
the model. (d) Structure D with amplitudes from the fit. (e) Structure DP with amplitudes from the model. ( f )  Structure DP 
with amplitudes from the fit. 
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data and y~, which is a function of the fit parameters, 
is equal to In Gc(s; [ml) .  Refinement of the fit param- 
eters was stopped when the decrease of X~ became 
less than 0.1% of the previous Xr 2 value. 

For all model structures, the parameters obtained 
from the fitting procedure (see lines f of Table 2) are 
in good agreement with the parameters calculated a 
priori from the atomic parameters of the structural 
model (see lines m of Table 2). The starting param- 
eters for B and Po, obtained from the Wilson plot, 
are given by lines W of Table 2. Note that, for 
structures P and DP, where displacive modulation 
occurs, the B values obtained from the Wilson plot 
are significantly larger than the B values obtained 
from the fitting procedure. This is caused by the 
large correlation between displacive modulation and 
thermal motion (see Appendix A). For structure D, 
where only density modulation occurs, the values of 
the parameters B and Po obtained from the Wilson 
plot are in good agreement with the values obtained 
from the fitting procedure. 

Figs. l(b), (d) and (f)  show that, for all model 
structures, the intensity distributions (26) calculated 
from the simulated reflection data are accurately 
reproduced by the intensity distributions estimated 
from the parameters obtained by the fitting pro- 
cedure. Also, note that the Wilson plot, used to 
estimate the starting values for B and P0, indicated 
by a dotted line in each figure, coincides largely with 
the intensity distribution estimated for the main 
reflections. 

The convergence of the fitting procedure turned 
out to be reasonably fast (only a few minutes on a 
PC with an 80486 processor). For structure P 
(displacive modulation), approximately three times 
as many cycles were needed before the stopping 
criterion was fulfilled. This slower convergence was 
probably caused by the amplitudes P~ and P2, which 
behaved somewhat unstably during the refinement 
process. This is explained as follows. As mentioned 
earlier, each amplitude Pk_ (kp m 0) is estimated by 
extrapolation of the inter~sity distribution for the 
]kplth-order satellites towards s = 0. This is also seen 
from equation (50) for F, where the first term, which 
is important at the lower s values, depends heavily 
on the amplitudes Pkp (kp ~ 0), whereas the second 
term, which is important at the higher s values, 
depends only weakly on these amplitudes, However, 
there are some problems regarding this extrapo- 
lation. First of all, the s intervals at lower s values 
are much larger than those at higher s values, so 
there are few data points near s = 0. Of course, one 
can use smaller intervals, but this does not solve the 
problem because the weight of the data points, which 
is the number of reflections in each interval, must be 
adjusted accordingly. In addition, as for non- 
modulated crystals, one of the assumptions that 

leads to (50) is not valid for s = 0 (Wilson, 1949). 
Thus, the few data points near s = 0 are unreliable 
and should be excluded from the. fitting procedure. 
Second, for crystals where only displacive modula- 
tion occurs, the intensity distribution for the satellite 
reflections show asymptotic behavior at s = 0, i.e. 
In Gc(s; I m l ) - - -  - oo for s---,0 and m ~ 0 (see Figs. la 
and b). For these two reasons, determination of 
the amplitudes Pk_ (kp g 0), by extrapolation of the 
intensity distributions for the satellite reflections 
towards s = 0 will be less straightforward. In fact, the 
refinement of these amplitudes depends heavily on 
the second term of (50), which depends only weakly 
on these amplitudes. As a result, convergence of the 
amplitudes Pk (kp ~ 0) will be slower but the values 
obtained f ro~ the fitting procedure will be correct, 
as is seen in Table 2. This slower convergence will 
occur for any crystal for which displacive modula- 
tion is the dominant type of modulation. 

9. Concluding remarks 

A theoretical expression is derived for the average 
X-ray diffraction intensity, as a function of (sinO)/A, 
of main reflections and low-order satellite reflections 
of crystals with an incommensurate one-dimensional 
modulation. The atomic modulation functions for 
displacive and density modulations contain harmon- 
ics up to any order. The modulation of individual 
atoms is taken into account by the introduction of 
overall modulation amplitudes. The theoretical aver- 
age intensity is equal to the average X-ray diffraction 
intensity of nonmodulated crystals (Wilson, 1942), 
multiplied by a modification factor that depends on 
(sin0)/A, the reflection order [m[ and the overall 
modulation amplitudes. 

Tests performed on three idealized model struc- 
tures show that the theoretical intensity distributions 
(27), employing approximation (50), are in excellent 
agreement with the simulated intensity distributions. 
A fitting procedure is presented that enables the 
estimation of the scale factor, the overall isotropic 
temperature parameter and the overall modulation 
parameters from the experimental intensity distribu- 
tions (26). The estimated parameters again are in 
excellent agreement with the parameters calculated 
directly from the structural parameters [(38), (49)]. 

As is expected for the present idealized test struc- 
tures, the theoretical intensity distributions evaluated 
by use of estimated parameters compare slightly 
better with the simulated intensity distributions than 
those evaluated by use of calculated parameters. This 
is more prominently observed for the second-order 
satellites. 

The values of the overall modulation amplitudes 
estimated from the fitting procedure can be used to 
obtain information about the type of modulation 
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and the importance of the various harmonics 
involved in the atomic modulation functions 

The first applications of direct methods to incom- 
mensurately modulated structures employed IFI 
values instead of' normalized structure factors (Hao, 
Liu & Fan, 1987; Xiang, Fan, Wu & Li, 1990), as a 
definition for the latter was not yet available. 
Recently, preliminary definitions for normalized 
structure factors have been proposed (Lam, 
Beurskens & van Smaalen, 1992a,b, 1993) with 
atomic modulation functions that contain only a 
first-order harmonic. A more general definition for 
normalized structure factors of crystals with an 
incommensurate one-dimensional modulation has 
now been given in (28). These normalized structure 
factors can be used for the computerization of 
various direct-methods procedures. Experiments 
regarding the use of these normalized structure fac- 
tors in the triplet phase relationship and the tangent 
formula (Karle & Karle, 1966) are in progress (Lam 
et al., 1994). 

In situations where the displacive modulation gives 
large anisotropic effects in reciprocal space, (14) may 
be the basis for a more accurate definition of 
normalized structure factors for crystals with an 
incommensurate one-dimensional modulation. 
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this work was supported by the Netherlands Foun- 
dation for Chemical Research (SON), with financial 
aid from the Netherlands Organization for the 
Advancement of Pure Research (NWO). 

APPENDIX A 

For crystals with displacive modulation, it is well 
known that the temperature parameters of an atom 
in the average structure (i.e. the structure obtained 
from main reflections only) are usually larger than 
those of the same atom in the basic structure because 
the displacive modulation simulates a temperature 
effect (P6rez-Mato, Madariaga & Tello, 1986). The 
relation between these temperature parameters and 
the displacive modulation of the atom is shown as 
follows. The correction to the atomic scattering 
factor as a result of the anisotropic thermal vibration 
of an atom is given by 

exp [ -¼/ J=  Z(B~')uSiSja~*aj*],~ (54) 

where (B~)0. is the tjth component of the temperature 
tensor B ~' and a~* is the length of a~*. Further, the 
components of the temperature tensor of an atom in 
the basic structure are denoted (B~)u while the com- 
ponents of the temperature tensor of the same atom 

in the average structure are denoted (B~) U. For small 
amplitudes C~' u [(14)] and in a low-order approxi- 
mation [see condition (30)], one can easily show, by 
use of (54) for the temperature factor and (20) for 
the atomic modulation factor, that the relation 
between these components can be written as 

K, 
(B~)u= (B~') U + 4¢r 2 ~'. (U~)o(ai*aj*) -1, (55) 

k== 1 

where the (U~')0 , defined in (15), are the components 
of the K, symmetric tensors UkU. This clearly shows 
that the displacive modulation of an atom introduces 
an extra temperature factor. Note that, as long as the 
multiple summation in (20) can be approximated by 
the term given by condition (30), (55) can also be 
used for structures where displacive modulation 
occurs together with density modulation. 

As for nonmodulated crystals, the temperature 
tensors B~' and B~ can be reduced to the effective 
isotropic temperature parameters B~,efr and B,Uerf, 
respectively (Hamilton, 1959). Then, by use of (3), 
(4), (15) and (36), the relation between these param- 
eters can be obtained from (55) as 

B ~'.,err-- B~,efr + (4rr2/3) Y', (U~') 2. (56) 
ku= 1 

One can now write down a relation between the 
overall isotropic temperature parameters Bb,err of the 
basic structure and B.,efr of the average structure. If, 
as usual, overall temperature parameters are defined 
as weighted averages over atomic temperature 
parameters, then it follows from (56) that 

Ba,erf = Bb,efr + (4rr2/3)U 2, (57) 

where the effect of the displacive modulation is 
accounted for by the overall modulation amplitude 
U defined by 

u -  Z (58) 
k.-- i 

with the amplitudes Uku given by (49). 
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Abstract 

This paper presents a method for the reliable extrac- 
tion of structure-factor amplitude information from 
the least-squares integrated-intensity refinement of 
powder diffraction data. The inevitable overlap of 
Bragg reflections can lead to strongly correlated 
reflection intensities that can, in turn, produce 
unrealistic negative intensity estimates. A Bayesian 
method is presented that tackles the problem of 
highly correlated positive and negative intensities. 
The results indicate that accurate structure-factor 
amplitudes may be recovered even in regions of a 
powder diffraction pattern where overlap is almost 
complete. 

1. Introduction 

Structure determination from powder diffraction 
data alone is a substantial crystallographic challenge. 
Powder diffraction data are, in general, of poorer 
statistical quality than single-crystal data. More sig- 
nificantly, however, the collapse of three dimensions 
of diffraction data on to the one dimension of a 
powder diffraction pattern leads to inevitable peak 
overlap. Much attention has been given to the prob- 
lems of overlapping integrated intensities (David, 
1987, 1990; Jansen, Peschar & Schenk, 1992; Ester- 
mann, McCusker & Baerlocher, 1992; Bricogne, 
1991; Gilmore, Henderson & Bricogne, 1991). It is, 
however, clear that a poor evaluation of the 
integrated intensities in a powder diffraction pattern 
will always lead to poor results no matter how good 

© 1994 International Union of Crystallography 
Printed in Great Britain - all rights reserved 

the algorithms used in the analysis of overlapped 
reflections. In this paper, attention is focused on the 
reliable extraction of structure-factor amplitudes. It 
is assumed that the unit cell has already been derived 
using, for example, auto-indexing techniques and 
that, therefore, the Bragg-peak positions can be 
accurately determined. The approach is based upon 
the Pawley (1981) method and involves the least- 
squares fitting of the diffraction pattern to separate 
integrated intensities. The parameters that are 
usually varied in such a procedure include back- 
ground parameters, cell parameters (determining 
peak positions), peak-width parameters (determining 
peak shape) and the integrated intensities (which are 
directly proportional to peak area). The procedure 
works extremely well if peak overlap is either non- 
existent or exact (in the case, for example, of 511 and 
333 cubic Bragg reflections). When substantial over- 
lap occurs, intensity values can become highly corre- 
lated. Although the summed area of a group of 
Bragg peaks will be well determined, the individual 
intensities can vary wildly between negative and 
positive values that are substantially larger in magni- 
tude than the overall 'clump' intensity itself. This is 
clearly wrong and has been taken to represent a 
fundamental weakness of the least-squares method. 
Pawley (1981) was aware of the problem and ingeni- 
ously introduced into the least-squares analysis addi- 
tional slack constraint terms that had the tendency to 
force individual intensities to be close to the mean 
value of a 'clump' of intensities. In practice, this 
approach does not completely obviate the problem 
of highly varying intensity values. An elegant tech- 
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